If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+105y+13=0
a = 8; b = 105; c = +13;
Δ = b2-4ac
Δ = 1052-4·8·13
Δ = 10609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10609}=103$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-103}{2*8}=\frac{-208}{16} =-13 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+103}{2*8}=\frac{-2}{16} =-1/8 $
| x2=49 | | 4(y-8)=20 | | 8w-4=3(w-3) | | 5-4(n-5)=25+4n | | 5-5t=2t-7 | | 18x^2-90x=0 | | 2/x+2=3/5x+21/10-2/x+2 | | 90=2(15+b) | | x3−7x2−20x+18=0 | | 21x^2-62x+45=0 | | 2/x+2=3/5x | | m+2m-6=-122m | | -3k-10=-2(-4-6k) | | 3x-3=27-2× | | |3x+7|=5 | | 2-t=4t-8 | | 3(-2-x)=6x+2-5x | | -18=-14a | | b+15=90 | | 8(4e+8)=160 | | 25-8=9-a | | x+5/6=8 | | n+(n+2)+(n+4)=96 | | 15.x2=735 | | -16=10a | | -6(x+1)=-3x-15 | | 1/2x+5=1/2 | | -8=-12b | | 0.15x=3.36 | | 2(a-8)+7=5(a+2)-3a-19+ | | 1.3x-4=-30 | | 7x^2-34x=5 |